PhpRiot
Become Zend Certified

Prepare for the ZCE exam using our quizzes (web or iPad/iPhone). More info...


When you're ready get 7.5% off your exam voucher using voucher CJQNOV23 at the Zend Store

MongoCollection::aggregate

(PECL mongo >=1.3.0)

MongoCollection::aggregatePerform an aggregation using the aggregation framework

Description

public array MongoCollection::aggregate ( array $pipeline [, array $op [, array $... ]] )

The MongoDB » aggregation framework provides a means to calculate aggregated values without having to use MapReduce. While MapReduce is powerful, it is often more difficult than necessary for many simple aggregation tasks, such as totaling or averaging field values.

This method accepts either a variable amount of pipeline operators, or a single array of operators constituting the pipeline.

Parameters

pipeline

An array of pipeline operators, or just the first operator.

op

The second pipeline operator.

...

Additional pipeline operators.

Return Values

The result of the aggregation as an array. The ok will be set to 1 on success, 0 on failure.

Errors/Exceptions

When an error occurs an array with the following keys will be returned:

  • errmsg - containing the reason for the failure
  • code - the errorcode of the failure
  • ok - will be set to 0.

Examples

Example #1 MongoCollection::aggregate example

The following example aggregation operation pivots data to create a set of author names grouped by tags applied to an article. Call the aggregation framework by issuing the following command:

<?php
$m 
= new Mongo;
$c $m->selectDB("examples")->selectCollection("article");
$data = array (
    
'title' => 'this is my title',
    
'author' => 'bob',
    
'posted' => new MongoDate,
    
'pageViews' => 5,
    
'tags' => array ( 'fun''good''fun' ),
    
'comments' => array (
      array (
        
'author' => 'joe',
        
'text' => 'this is cool',
      ),
      array (
        
'author' => 'sam',
        
'text' => 'this is bad',
      ),
    ),
    
'other' =>array (
      
'foo' => 5,
    ),
);
$d $c->insert($data, array("w" => 1));

$ops = array(
    array(
        
'$project' => array(
            
"author" => 1,
            
"tags"   => 1,
        )
    ),
    array(
'$unwind' => '$tags'),
    array(
        
'$group' => array(
            
"_id" => array("tags" => '$tags'),
            
"authors" => array('$addToSet' => '$author'),
        ),
    ),
);
$results $c->aggregate($ops);
var_dump($results);
?>

The above example will output:

array(2) {
  ["result"]=>
  array(2) {
    [0]=>
    array(2) {
      ["_id"]=>
      array(1) {
        ["tags"]=>
        string(4) "good"
      }
      ["authors"]=>
      array(1) {
        [0]=>
        string(3) "bob"
      }
    }
    [1]=>
    array(2) {
      ["_id"]=>
      array(1) {
        ["tags"]=>
        string(3) "fun"
      }
      ["authors"]=>
      array(1) {
        [0]=>
        string(3) "bob"
      }
    }
  }
  ["ok"]=>
  float(1)
}

The following examples use the » zipcode data set. Use mongoimport to load this data set into your mongod instance.

Example #2 MongoCollection::aggregate example

To return all states with a population greater than 10 million, use the following aggregation operation:

<?php
$m 
= new Mongo;
$c $m->selectDB("test")->selectCollection("zips");

$out $c->aggregate(array(
        
'$group' => array(
            
'_id' => '$state',
           
'totalPop' => array('$sum' => '$pop')
        )
    ),
    array(
        
'$match' => array('totalPop' => array('$gte' => 10*1000*1000))
    )
);

var_dump($out);
?>

The above example will output something similar to:

array(2) {
  ["result"]=>
  array(7) {
    [0]=>
    array(2) {
      ["_id"]=>
      string(2) "TX"
      ["totalPop"]=>
      int(16986510)
    }
    [1]=>
    array(2) {
      ["_id"]=>
      string(2) "PA"
      ["totalPop"]=>
      int(11881643)
    }
    [2]=>
    array(2) {
      ["_id"]=>
      string(2) "NY"
      ["totalPop"]=>
      int(17990455)
    }
    [3]=>
    array(2) {
      ["_id"]=>
      string(2) "IL"
      ["totalPop"]=>
      int(11430602)
    }
    [4]=>
    array(2) {
      ["_id"]=>
      string(2) "CA"
      ["totalPop"]=>
      int(29760021)
    }
    [5]=>
    array(2) {
      ["_id"]=>
      string(2) "OH"
      ["totalPop"]=>
      int(10847115)
    }
    [6]=>
    array(2) {
      ["_id"]=>
      string(2) "FL"
      ["totalPop"]=>
      int(12937926)
    }
  }
  ["ok"]=>
  float(1)
}

Example #3 MongoCollection::aggregate example

To return the average populations for cities in each state, use the following aggregation operation:

<?php
$m 
= new Mongo;
$c $m->selectDB("test")->selectCollection("zips");

$out $c->aggregate(
    array(
        
'$group' => array(
            
'_id' => array('state' => '$state''city' => '$city' ),
            
'pop' => array('$sum' => '$pop' )
        )
    ),
    array(
        
'$group' => array(
            
'_id' => '$_id.state',
            
'avgCityPop' => array('$avg' => '$pop')
        )
    )
);

var_dump($out);
?>

The above example will output something similar to:

array(2) {
  ["result"]=>
  array(51) {
    [0]=>
    array(2) {
      ["_id"]=>
      string(2) "DC"
      ["avgCityPop"]=>
      float(303450)
    }
    [1]=>
    array(2) {
      ["_id"]=>
      string(2) "DE"
      ["avgCityPop"]=>
      float(14481.913043478)
    }
    [2]=>
    array(2) {
      ["_id"]=>
      string(2) "RI"
      ["avgCityPop"]=>
      float(18933.283018868)
    }
    [3]=>
    array(2) {
      ["_id"]=>
      string(2) "AL"
      ["avgCityPop"]=>
      float(7907.2152641879)
    }
    [4]=>
    array(2) {
      ["_id"]=>
      string(2) "NH"
      ["avgCityPop"]=>
      float(5232.320754717)
    }
...
    [45]=>
    array(2) {
      ["_id"]=>
      string(2) "WY"
      ["avgCityPop"]=>
      float(3359.9111111111)
    }
    [46]=>
    array(2) {
      ["_id"]=>
      string(2) "MN"
      ["avgCityPop"]=>
      float(5335.4865853659)
    }
    [47]=>
    array(2) {
      ["_id"]=>
      string(2) "OK"
      ["avgCityPop"]=>
      float(6155.7436399217)
    }
    [48]=>
    array(2) {
      ["_id"]=>
      string(2) "IL"
      ["avgCityPop"]=>
      float(9931.0182450043)
    }
    [49]=>
    array(2) {
      ["_id"]=>
      string(2) "WI"
      ["avgCityPop"]=>
      float(7323.0074850299)
    }
    [50]=>
    array(2) {
      ["_id"]=>
      string(2) "WV"
      ["avgCityPop"]=>
      float(2759.1953846154)
    }
  }
  ["ok"]=>
  float(1)
}

See Also

PHP Manual